n_dims <- sample(3:10,1)
print(n_dims)
## [1] 10
my_vec <- seq(from=1, to=n_dims^2)
print(my_vec)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
# Since it was random when n_dims result was 3 the my_vec result was:
[1] 1 2 3 4 5 6 7 8 9
#When n_dims result was 9 the my_vec result was:
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
[44] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
shuffled_vector <- sample(my_vec)
print(shuffled_vector)
## [1] 95 81 65 57 31 34 92 12 97 29 78 72 15 17 100 64 38 32
## [19] 47 4 75 80 39 89 59 16 11 45 62 90 41 99 24 20 49 76
## [37] 87 56 35 21 9 30 51 74 44 13 96 10 68 19 69 37 50 7
## [55] 84 42 46 3 5 27 48 6 86 33 82 40 28 73 54 52 85 83
## [73] 43 63 67 53 22 26 94 25 61 23 88 55 2 18 60 93 14 8
## [91] 58 36 70 79 91 66 98 77 71 1
m <- matrix(data=my_vec,nrow=n_dims)
print(m)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 11 21 31 41 51 61 71 81 91
## [2,] 2 12 22 32 42 52 62 72 82 92
## [3,] 3 13 23 33 43 53 63 73 83 93
## [4,] 4 14 24 34 44 54 64 74 84 94
## [5,] 5 15 25 35 45 55 65 75 85 95
## [6,] 6 16 26 36 46 56 66 76 86 96
## [7,] 7 17 27 37 47 57 67 77 87 97
## [8,] 8 18 28 38 48 58 68 78 88 98
## [9,] 9 19 29 39 49 59 69 79 89 99
## [10,] 10 20 30 40 50 60 70 80 90 100
Find a function in r to transpose the matrix.print it out again and note how it has changed.
my_matrix=matrix(data=my_vec,nrow=n_dims)
transposed_matrix <- t(my_matrix)
print(transposed_matrix)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 2 3 4 5 6 7 8 9 10
## [2,] 11 12 13 14 15 16 17 18 19 20
## [3,] 21 22 23 24 25 26 27 28 29 30
## [4,] 31 32 33 34 35 36 37 38 39 40
## [5,] 41 42 43 44 45 46 47 48 49 50
## [6,] 51 52 53 54 55 56 57 58 59 60
## [7,] 61 62 63 64 65 66 67 68 69 70
## [8,] 71 72 73 74 75 76 77 78 79 80
## [9,] 81 82 83 84 85 86 87 88 89 90
## [10,] 91 92 93 94 95 96 97 98 99 100
first_row_sum <- sum(transposed_matrix[1,])
print(first_row_sum)
## [1] 55
first_row_mean <- mean(transposed_matrix[1,])
print(first_row_mean)
## [1] 5.5
last_row_sum <- sum(transposed_matrix[n_dims,])
print (last_row_sum)
## [1] 955
last_row_mean <- mean(transposed_matrix[n_dims,])
print(last_row_mean)
## [1] 95.5
ev <- eigen(transposed_matrix)
(values <- ev$values)
## [1] 5.208398e+02+0.000000e+00i -1.583980e+01+0.000000e+00i
## [3] -1.142138e-14+1.633587e-14i -1.142138e-14-1.633587e-14i
## [5] 1.237539e-14+0.000000e+00i 8.193133e-15+0.000000e+00i
## [7] -3.683161e-15+3.398555e-15i -3.683161e-15-3.398555e-15i
## [9] 7.924536e-16+2.788653e-16i 7.924536e-16-2.788653e-16i
(vectors <- ev$vectors)
## [,1] [,2] [,3]
## [1,] -0.03766295+0i 0.51209464+0i 0.05352384+0.07987574i
## [2,] -0.09082932+0i 0.40216530+0i 0.09320062-0.16934269i
## [3,] -0.14399568+0i 0.29223595+0i -0.12498384-0.08840556i
## [4,] -0.19716205+0i 0.18230661+0i -0.21802373+0.07598555i
## [5,] -0.25032842+0i 0.07237726+0i -0.38387961+0.19296892i
## [6,] -0.30349478+0i -0.03755208+0i 0.47619901+0.00000000i
## [7,] -0.35666115+0i -0.14748143+0i 0.22631526-0.10430295i
## [8,] -0.40982752+0i -0.25741077+0i -0.05266643+0.12372409i
## [9,] -0.46299388+0i -0.36734011+0i 0.39669873-0.10059843i
## [10,] -0.51616025+0i -0.47726946+0i -0.46638387-0.00990467i
## [,4] [,5] [,6]
## [1,] 0.05352384-0.07987574i 0.19881647+0i -0.16430906+0i
## [2,] 0.09320062+0.16934269i -0.12063181+0i 0.10080298+0i
## [3,] -0.12498384+0.08840556i 0.10132815+0i -0.01242521+0i
## [4,] -0.21802373-0.07598555i 0.02478184+0i 0.06442974+0i
## [5,] -0.38387961-0.19296892i -0.63697715+0i 0.62698213+0i
## [6,] 0.47619901+0.00000000i 0.14001112+0i -0.43471309+0i
## [7,] 0.22631526+0.10430295i 0.36445373+0i -0.52319029+0i
## [8,] -0.05266643-0.12372409i -0.31244501+0i 0.30058647+0i
## [9,] 0.39669873+0.10059843i 0.47408815+0i -0.05490464+0i
## [10,] -0.46638387+0.00990467i -0.23342550+0i 0.09674097+0i
## [,7] [,8]
## [1,] -0.006003751+0.21808209i -0.006003751-0.21808209i
## [2,] 0.017176328+0.02240989i 0.017176328-0.02240989i
## [3,] 0.033024268-0.29586587i 0.033024268+0.29586587i
## [4,] -0.101163246+0.14682597i -0.101163246-0.14682597i
## [5,] -0.246255165-0.09364257i -0.246255165+0.09364257i
## [6,] 0.551450042+0.00000000i 0.551450042+0.00000000i
## [7,] -0.103800652-0.35803521i -0.103800652+0.35803521i
## [8,] -0.343279174+0.28942401i -0.343279174-0.28942401i
## [9,] 0.315868699+0.01155781i 0.315868699-0.01155781i
## [10,] -0.117017348+0.05924389i -0.117017348-0.05924389i
## [,9] [,10]
## [1,] -0.34110231+0.068970737i -0.34110231-0.068970737i
## [2,] -0.06431292+0.003787573i -0.06431292-0.003787573i
## [3,] 0.30452490-0.028057264i 0.30452490+0.028057264i
## [4,] 0.24875378-0.061912944i 0.24875378+0.061912944i
## [5,] -0.54105578+0.000000000i -0.54105578+0.000000000i
## [6,] 0.50995276+0.017737737i 0.50995276-0.017737737i
## [7,] 0.29281015-0.061110609i 0.29281015+0.061110609i
## [8,] -0.07574822-0.009209291i -0.07574822+0.009209291i
## [9,] -0.10123893+0.047640764i -0.10123893-0.047640764i
## [10,] -0.23258342+0.022153299i -0.23258342-0.022153299i
typeof(vectors)
## [1] "complex"
typeof(values)
## [1] "complex"
#Create a list with the following named elements: #my_matrix, which is a 4 x 4 matrix filled with random uniform values
my_matrix=matrix(runif(16),nrow=4,ncol=4)
print(my_matrix)
## [,1] [,2] [,3] [,4]
## [1,] 0.6402945 0.3505776 0.8367381 0.2158682
## [2,] 0.1113842 0.5402547 0.7845211 0.2878821
## [3,] 0.7474812 0.6051653 0.1818287 0.4376500
## [4,] 0.3255314 0.6436431 0.3433260 0.3515986